

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

layout: page
title: Contributing
permalink: /contributing/

How to contribute to Project Mentat

This project is very new, so we’ll probably revise these guidelines. Please
comment on a bug before putting significant effort in, if you’d like to
contribute.

You probably want to quickly read the front page of the wiki [https://github.com/mozilla/mentat/wiki] to get up to speed.

Guidelines

	Follow the Style Guide (see below).

	Keep work branches in your own GitHub fork; rebase your own branches at will.

	Squash or rebase branches before merging to master so the commits make sense
on their own.

	Get a SGTM from someone relevant before merging.

	Keep commits to master bisect-safe (i.e., each commit should pass all tests).

	Sign-off commits before merging (see below).

	Make sure your commit message: references the issue or bug number, if there is
one; identifies the reviewers; and follows a readable style, with the long
description including any additional information that might help future
spelunkers (see below).

Frobnicate the URL bazzer before flattening pilchard. (#123) r=mossop,rnewman.

The frobnication method used is as described in Podder's Miscellany, page 15.
Note that this pull request doesn't include tests, because we're bad people.

Signed-off-by: Random J Developer <random@developer.example.org>

Example

	Fork this repo at github.com/mozilla/mentat [https://github.com/mozilla/mentat#fork-destination-box].

	Clone your fork locally. Make sure you use the correct clone URL.

git clone git@github.com:YOURNAME/mentat.git

Check your remotes:

git remote --verbose

Make sure you have an upstream remote defined:

git remote add upstream https://github.com/mozilla/mentat

	Create a new branch to start working on a bug or feature:

git checkout -b some-new-branch

	Do some work, making sure you signoff every commit:

git commit --signoff --message "Some commit message"

	Rebase your work during development and before submitting a pull request,
avoiding merge commits, such that your commits are a logical sequence to
read rather than a record of your fevered typing.

	Make sure you’re on the correct branch and are pulling from the correct upstream (currently rust):

git checkout some-new-branch
git pull upstream rust --rebase

Or using git reset --soft (as described in a tale of three trees [http://www.infoq.com/presentations/A-Tale-of-Three-Trees])

	Update your fork with the local changes on your branch:

git push origin some-new-branch

	Submit a pull request. It would be helpful if you also flagged somebody
for review, by typing their @username in the comments section.

Addressing review comments

Adding more commits

After submitting a pull request, certain review comments might need to be
addressed. All you have to do is commit your new work, and simply update
your fork with the local changes on your branch again. The pull request
will automatically update with your new changes.

Signoff earlier commits

If you forgot to signoff some earlier commits, do an incremental rebase
on the branch you’re working on. Find the earliest commit hash you want to
change, e.g., “1234567” (via git log), then use it in the rebase command
to start an interactive rebase. Type edit instead of pick for the
commits you want to edit.

git rebase --interactive '1234567^'
git commit --amend --signoff --no-edit
git rebase --continue

Squashing earlier commits

While you’re working, committing often is a good idea. However, it might
not make sense to have commits that are too granular or don’t make sense
on their own before closing a pull request and merging back to upstream master.
Find the earliest commit hash you want to change, e.g., “1234567”
(via git log), then use it in the rebase command to start an interactive
rebase. Type squash instead of pick for the commits you want to squash
into their parents.

git rebase --interactive '1234567^'

Properly set name and email

Update your .gitconfig with the proper information. You might need to
update the earlier commits and sign them off as well, see above.

git config --global user.name "Foo Bar"
git config --global user.email john@doe.com
git commit --amend --reset-author --no-edit

Style Guide

Our Rust code approximately follows the Rust style guide [https://github.com/rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md]. We use four-space indents, with categorized and alphabetized imports; see the examples in the tree. We try to follow these guidelines [https://aturon.github.io/], too.

We do not automatically use rustfmt because it tends to make code incrementally worse, but you should be prepared to consider its suggestions.

An example of ‘good’ Rust code, omitting the license block:

#![allow(…)]

extern crate foo;

use std::borrow::Borrow;
use std::error::Error;
use std::iter::{once, repeat};

use rusqlite;

use mentat_core::{
 Attribute,
 AttributeBitFlags,
 Entid,
};

type MyError = Box<Error + Send + Sync>;

pub type Thing = Borrow<String>;

pub fn foo_thing(x: Thing) -> Result<(), MyError> {
 // Do things here.
}

Our JavaScript code follows the airbnb style [https://github.com/airbnb/javascript]
with a few exceptions. The precise rules are
likely to change a little as we get started so for now let eslint be your guide.

Our ClojureScript code (no longer live) doesn’t follow a specific style guide.

How to sign-off your commits

To help tracking who did what, we have a “sign-off” procedure on patches. This
avoids the need for physically signed “[Committers|Contributors] License
Agreements”.

The sign-off is a simple line at the end of the commit message, which certifies
that you wrote it or otherwise have the right to pass it on as an open-source
patch. The rules are pretty simple: if you can certify the below:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

then you just add a line saying

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name (sorry, no pseudonyms or anonymous contributions).

If you’re using the command line, you can get this done automatically with

$ git commit --signoff

Some GUIs (e.g., SourceTree) have an option to automatically sign commits.

If you need to slightly modify patches you receive in order to merge them,
because the code is not exactly the same in your tree and the submitters’.
If you stick strictly to rule (c), you should ask the submitter to submit, but
this is a totally counter-productive waste of time and energy.
Rule (b) allows you to adjust the code, but then it is very impolite to change
one submitter’s code and make them endorse your bugs. To solve this problem,
it is recommended that you add a line between the last Signed-off-by header and
yours, indicating the nature of your changes. While there is nothing mandatory
about this, it seems like prepending the description with your mail and/or name,
all enclosed in square brackets, is noticeable enough to make it obvious that
you are responsible for last-minute changes. Example:

Signed-off-by: Random J Developer <random@developer.example.org>
[lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>

This practice is particularly helpful if you maintain a stable branch and
want at the same time to credit the author, track changes, merge the fix,
and protect the submitter from complaints. Note that under no circumstances
can you change the author’s identity (the From header), as it is the one
which appears in the change-log.

Project Mentat Documentation Site

This site is a place to provide the users of Mentat with all the documentation, examples and tutorials required in order to use Mentat inside a project.

This site will contain the following:

	API Documentation for Mentat and it’s SDKs.

	Tutorials for cross compilation of Mentat for other platforms. (Coming)

	Examples of how to design data for storage in Mentat.

	Examples of how to use Mentat and it’s SDKs. (Coming)

	Quick Start Guides for installing and using Mentat. (Coming)

Build and run locally

1. Install [Jekyll](https://jekyllrb.com/docs/installation/)
2. `cd docs`
3. `bundle exec jekyll serve --incremental`
4. open local docs site at http://127.0.0.1:4000/

layout: page
title: About
permalink: /about/

Project Mentat

Project Mentat is a persistent, embedded knowledge base. It draws heavily on DataScript [https://github.com/tonsky/datascript] and Datomic [http://datomic.com].

Mentat is implemented in Rust.

The first version of Project Mentat, named Datomish, was written in ClojureScript [https://github.com/mozilla/mentat/tree/clojure], targeting both Node (on top of promise_sqlite) and Firefox (on top of Sqlite.jsm). It also worked in pure Clojure on the JVM on top of jdbc-sqlite. The name was changed to avoid confusion with Datomic [http://datomic.com].

The Rust implementation gives us a smaller compiled output, better performance, more type safety, better tooling, and easier deployment into Firefox and mobile platforms.

Motivation

Mentat is intended to be a flexible relational (not key-value, not document-oriented) store that makes it easy to describe, grow, and reuse your domain schema.

By abstracting away the storage schema, and by exposing change listeners outside the database (not via triggers), we hope to make domain schemas stable, and allow both the data store itself and embedding applications to use better architectures, meeting performance goals in a way that allows future evolution.

Data storage is hard

We’ve observed that data storage is a particular area of difficulty for software development teams:

	It’s hard to define storage schemas well. A developer must:

	Model their domain entities and relationships.

	Encode that model efficiently and correctly using the features available in the database.

	Plan for future extensions and performance tuning.

In a SQL database, the same schema definition defines everything from high-level domain relationships through to numeric field sizes in the same smear of keywords. It’s difficult for someone unfamiliar with the domain to determine from such a schema what’s a domain fact and what’s an implementation concession — are all part numbers always 16 characters long, or are we trying to save space? — or, indeed, whether a missing constraint is deliberate or a bug.

The developer must think about foreign key constraints, compound uniqueness, and nullability. They must consider indexing, synchronizing, and stable identifiers. Most developers simply don’t do enough work in SQL to get all of these things right. Storage thus becomes the specialty of a few individuals.

Which one of these is correct?

{:db/id :person/email
 :db/valueType :db.type/string
 :db/cardinality :db.cardinality/many ; People can have multiple email addresses.
 :db/unique :db.unique/identity ; For our purposes, each email identifies one person.
 :db/index true} ; We want fast lookups by email.
{:db/id :person/friend
 :db/valueType :db.type/ref
 :db/cardinality :db.cardinality/many} ; People can have many friends.

CREATE TABLE people (
 id INTEGER PRIMARY KEY, -- Bug: because of the primary key, each person can have no more than 1 email.
 email VARCHAR(64), -- Bug?: no NOT NULL, so a person can have no email.
 -- Bug: nobody will ever have a long email address, right?
);
CREATE TABLE friendships (
 FOREIGN KEY person REFERENCES people(id), -- Bug?: no indexing, so lookups by friend or person will be slow.
 FOREIGN KEY friend REFERENCES people(id), -- Bug: no compound uniqueness constraint, so we can have dupe friendships.
);

They both have limitations — the Mentat schema allows only for an open world (it’s possible to declare friendships with people whose email isn’t known), and requires validation code to enforce email string correctness — but we think that even such a tiny SQL example is harder to understand and obscures important domain decisions.

	Queries are intimately tied to structural storage choices. That not only hides the declarative domain-level meaning of the query — it’s hard to tell what a query is trying to do when it’s a 100-line mess of subqueries and LEFT OUTER JOINs — but it also means a simple structural schema change requires auditing every query for correctness.

	Developers often capture less event-shaped than they perhaps should, simply because their initial requirements don’t warrant it. It’s quite common to later want to know when a fact was recorded [https://bugzilla.mozilla.org/show_bug.cgi?id=1341939], or in which order two facts were recorded (particularly for migrations), or on which device an event took place… or even that a fact was ever recorded and then deleted.

	Common queries are hard. Storing values only once, upserts, complicated joins, and group-wise maxima are all difficult for non-expert developers to get right.

	It’s hard to evolve storage schemas. Writing a robust SQL schema migration is hard, particularly if a bad migration has ever escaped into the wild! Teams learn to fear and avoid schema changes, and eventually they ship a table called metadata, with three TEXT columns, so they never have to write a migration again. That decision pushes storage complexity into application code. (Or they start storing unversioned JSON blobs in the database…)

	It’s hard to share storage with another component, let alone share data with another component. Conway’s Law applies: your software system will often grow to have one database per team.

	It’s hard to build efficient storage and querying architectures. Materialized views require knowledge of triggers, or the implementation of bottleneck APIs. Ad hoc caches are often wrong, are almost never formally designed (do you want a write-back, write-through, or write-around cache? Do you know the difference?), and often aren’t reusable. The average developer, faced with a SQL database, has little choice but to build a simple table that tries to meet every need.

Comparison to DataScript

DataScript asks the question: “What if creating a database were as cheap as creating a Hashmap?”

Mentat is not interested in that. Instead, it’s strongly interested in persistence and performance, with very little interest in immutable databases/databases as values or throwaway use.

One might say that Mentat’s question is: “What if an SQLite database could store arbitrary relations, for arbitrary consumers, without them having to coordinate an up-front storage-level schema?”

(Note that domain-level schemas are very valuable [http://martinfowler.com/articles/schemaless/].)

Another possible question would be: “What if we could bake some of the concepts of CQRS and event sourcing [http://www.baeldung.com/cqrs-event-sourced-architecture-resources] into a persistent relational store, such that the transaction log itself were of value to queries?”

Some thought has been given to how databases as values — long-term references to a snapshot of the store at an instant in time — could work in this model. It’s not impossible; it simply has different performance characteristics.

Just like DataScript, Mentat speaks Datalog for querying and takes additions and retractions as input to a transaction.

Unlike DataScript, Mentat exposes free-text indexing, thanks to SQLite.

Comparison to Datomic

Datomic is a server-side, enterprise-grade data storage system. Datomic has a beautiful conceptual model. It’s intended to be backed by a storage cluster, in which it keeps index chunks forever. Index chunks are replicated to peers, allowing it to run queries at the edges. Writes are serialized through a transactor.

Many of these design decisions are inapplicable to deployed desktop software; indeed, the use of multiple JVM processes makes Datomic’s use in a small desktop app, or a mobile device, prohibitive.

Mentat was designed for embedding, initially in an experimental Electron app (Tofino [https://github.com/mozilla/tofino]). It is less concerned with exposing consistent database states outside transaction boundaries, because that’s less important here, and dropping some of these requirements allows us to leverage SQLite itself.

Comparison to SQLite

SQLite is a traditional SQL database in most respects: schemas conflate semantic, structural, and datatype concerns, as described above; the main interface with the database is human-first textual queries; sparse and graph-structured data are ‘unnatural’, if not always inefficient; experimenting with and evolving data models are error-prone and complicated activities; and so on.

Mentat aims to offer many of the advantages of SQLite — single-file use, embeddability, and good performance — while building a more relaxed, reusable, and expressive data model on top.

Contributing

Please note that this project is released with a Contributor Code of Conduct.
By participating in this project you agree to abide by its terms.

See CONTRIBUTING.md for further notes.

This project is very new, so we’ll probably revise these guidelines. Please
comment on an issue before putting significant effort in if you’d like to
contribute.

layout: post
list_title: Examples
title: “Modeling data using Mentat”
date: 2018-04-17 16:07:37 +0100
category: examples

Worked examples of modeling data using Mentat

Used correctly, Mentat makes it easy for you to grow to accommodate new kinds of data, for data to synchronize between devices, for multiple consumers to share data, and even for errors to be fixed.

But what does “correctly” mean?

The following discussion and set of worked examples aim to help. During discussion sections a simplified syntax is used for schema examples.

Principles

Think about the domain, not about your UI

Given a set of mockups, or an MVP list of requirements, it’s easy to leap into defining a data model that supports exactly those things. In doing so we will likely end up with a data model that can’t support future capabilities, or that has crucial mismatches with the real world.

For example, one might design a contact manager UI like macOS’s — a list of string fields for a person:

	First name

	Last name

	Address line 1

	Address line 2

	Phone

	etc.

We might model this in Mentat as simple value properties:

[:person/name :db.type/string :db.cardinality/one] ; Incorrect: people can have many names!
[:person/home_address_line_one :db.type/string :db.cardinality/one]
[:person/home_address_line_two :db.type/string :db.cardinality/one]
[:person/home_city :db.type/string :db.cardinality/one]
[:person/home_phone :db.type/string :db.cardinality/one]

or in JSON as a simple object:

{
 "name": "Alice Smith",
 "home_address_line_one": "123 Main St",
 "home_city": "Anywhere",
 "home_phone": "555-867-5309"
}

We might realize that this proliferation of attributes is going in the wrong direction, and add nested structure:

{
 "name": "Alice Smith",
 "home_address": {
 "line_one": "123 Main St",
 "city": "Anywhere"
 }}

(quick, is a home phone number a property of the address or the person?)

Or we might allow for some people having multiple addresses and multiple homes:

{"name": "Alice Smith",
 "addresses": [{
 "type": "home",
 "line_one": "123 Main St",
 "city": "Anywhere"
 }]}

There are lots of reasons the address model is wrong [https://www.mjt.me.uk/posts/falsehoods-programmers-believe-about-addresses/], and the same is true of names [https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/]. But even the structure of this is wrong, when you think about it.

A physical place, for our purposes, has an address. (It might have more than one.)

Each place might play a number of roles to a number of people: the same house is the home of everyone who lives there, and the same business address is one of the work addresses for each employee. If I work from home, my work and business addresses are the same. It’s not quite true to say that an address is a “home”: an address identifies a place, and that place is a home to a person.

But a typical contact application gets this wrong: the same strings are duplicated (flattened and denormalized) into the independent contact records of each person. If a business moves location, or its building is renamed, we must change the addresses of multiple contacts.

A more correct model for this is relational:

[:person/name :db.type/string :db.cardinality/one]
[:person/lives_at :db.type/ref :db.cardinality/many] ; Points to a place.
[:person/works_at :db.type/ref :db.cardinality/many] ; Points to a place.
[:place/address :db.type/ref :db.cardinality/many] ; A place can have multiple addresses.
[:address/mailing_address :db.type/string :db.cardinality/one ; Each address can be represented once as a string.
 :db.unique/identity]
[:address/city :db.type/string :db.cardinality/one] ; Perhaps this is useful?

Imagine that Alice works from home, and Bob works at his office on South Street. Alice’s data looks like this:

[{:person/name "Alice Smith"
 :person/lives_at "alice_home"
 :person/works_at "alice_home"}
 {:db/id "alice_home"
 :place/address "main_street_123"}
 {:db/id "main_street_123"
 :address/mailing_address "123 Main St, Anywhere, WA 12345, USA"
 :address/city "Anywhere"}]

and Bob’s like this:

[{:person/name "Bob Salmon"
 :person/works_at "bob_office"}
 {:db/id "bob_office"
 :place/owner "Example Holdings LLC"
 :place/address "south_street_555"}
 {:db/id "south_street_555"
 :address/mailing_address "555 South St, Anywhere, WA 12345, USA"
 :address/city "Anywhere"}]

Now if Alice (ID 1234) moves her business out of her house (1235) into an office in Bob’s building (1236), we simply break one relationship and add a new one to a new place with the same address:

[[:db/retract 1234 :person/works_at 1235] ; Alice no longer works at home.
 [:db/add 1234 :person/works_at "new_office"]
 {:db/id "new_office"
 :place/address [:address/mailing_address "555 South St, Anywhere, WA 12345, USA"]}]

If the building is now renamed to “The Office Factory”, we can update its address in one step, affecting both Alice’s and Bob’s offices:

[[:db/retract 1236 :address/mailing_address "555 South St, Anywhere, WA 12345, USA"]
 [:db/add 1236 :address/mailing_address "The Office Factory, South St, Anywhere, WA 12345, USA"]]

You can see here how changes are minimal and correspond to real changes in the domain — two properties that help with syncing. There is no duplication of strings.

We can find everyone who works at The Office Factory in a simple query without comparing strings across ‘records’:

[:find ?name
 :where [?address :address/mailing_address "The Office Factory, South St, Anywhere, WA 12345, USA"]
 [?office :place/address ?address]
 [?person :person/works_at ?office]
 [?person :person/name ?name]]

Let’s say we later want to model move-in and move-out dates — useful for employment records and immigration paperwork!

Trying to add this to the JSON model is an exercise in frustration, because there is no stable way to identify people or places! (Go ahead, try it.)

To do it in Mentat simply requires defining a small bit of vocabulary:

[:place.change/person :db.type/ref :db.cardinality/many]
[:place.change/from :db.type/ref :db.cardinality/one] ; optional
[:place.change/to :db.type/ref :db.cardinality/one] ; optional
[:place.change/role :db.type/ref :db.cardinality/one] ; :person/lives_at or :person/works_at
[:place.change/on :db.type/instant :db.cardinality/one]
[:place.change/reason :db.type/string :db.cardinality/one] ; optional

so we can describe Alice’s office move:

[{:place.change/person 1234
 :place.change/from 1235
 :place.change/to 1237
 :place.change/role :person/works_at
 :place.change/on #inst "2018-02-02T13:00:00Z"}]

or Jane’s sale of her holiday home:

[{:place.change/person 2468
 :place.change/reason "Sale"
 :place.change/from 1235
 :place.change/role :person/lives_at
 :place.change/on #inst "2018-08-12T14:00:00Z"}]

Note that we don’t need to repeat the addresses, we don’t need to change the existing data, and we don’t need to complicate matters for existing code.

Now we can find everyone who moved office in February:

[:find ?name
 :where [?move :place.change/role :person/works_at]
 [?move :place.change/on ?on]
 [(>= ?on #inst "2018-02-01T00:00:00Z")]
 [(< ?on #inst "2018-03-01T00:00:00Z")]
 [?move :place.change/person ?person]
 [?person :person/name ?name]]

Tend towards recording observations, not changing state

These principles are all different aspects of normalization.

The introduction of fine-grained entities to represent data pushes us towards immutability: changes are increasingly changing an ‘arrow’ to point at one immutable entity or another, rather than re-describing a mutable entity.

In the previous example we introduced places and addresses. Places and addresses themselves rarely change, allowing us to mostly isolate the churn in our data to the meaningful relationships between entities.

Another example of this approach is shown in modeling browser history.

Firefox’s representation of history is, at its core, relatively simplistic; just two tables a little like this:

CREATE TABLE history (
 id INTEGER PRIMARY KEY,
 guid TEXT NOT NULL UNIQUE,
 url TEXT NOT NULL UNIQUE,
 title TEXT
);

CREATE TABLE visits (
 id INTEGER PRIMARY KEY,
 history_id INTEGER NOT NULL REFERENCES history(id),
 type TINYINT,
 timestamp INTEGER
);

Each time a URL is visited, an entry is added to the visits table and a row is added or updated in history. The title of the fetched page is used to update history.title, so that history.title always represents the most recently encountered title.

This works fine until more features are added.

Forgetting

Browsers often have some capacity for deleting history. Sometimes this appears in the form of an explicit ‘forget’ operation — “Forget the last five minutes of browsing”. Deleting visits in this way is fine: DELETE FROM visits WHERE timestamp < ?. But the mutability in the data model — title — trips us up. We’re unable to roll back the title of the history entry.

Syncing

But even if you are using Mentat or Datomic, and can turn to the log to reconstruct the old state, a mutable title on history will cause conflicts when syncing: one side’s observed titles will ‘lose’ and be discarded in order to avoid a conflict. That’s not right: those titles were seen. Unlike a conflicting counter or flag, these weren’t abortive, temporary states; they were observations of the world, so there shouldn’t be a winner and a loser.

Containers

The true data model becomes apparent when we consider containers. Containers are a Firefox feature to sandbox the cookies, site data, and history of different named sub-profiles. You can have a container just for Facebook, or one for your banking; those Facebook cookies won’t follow you around the web in your ‘personal’ container. You can simultaneously use separate Gmail accounts for work and personal email.

When Firefox added container support, it did so by annotating visits with a container:

CREATE TABLE visits (
 id INTEGER PRIMARY KEY,
 history_id INTEGER NOT NULL REFERENCES history(id),
 type TINYINT,
 timestamp INTEGER,
 container INTEGER
);

This means that each container competes for the title on history. If you visit facebook.com in your usual logged-in container, the browser will run something like this SQL:

UPDATE TABLE history
SET title = '(2) Facebook'
WHERE url = 'https://www.facebook.com';

If you visit it in the wrong container by mistake, you’ll get the Facebook login page, and Firefox will run:

UPDATE TABLE history
SET title = 'Facebook - Log In or Sign Up'
WHERE url = 'https://www.facebook.com';

Next time you open your history, you’ll see the login page title, even if you had a logged-in facebook.com session open in another tab. There’s no way to differentiate between the containers’ views.

The correct data model for history is:

	Users visit a URL on a device in a container.

	Pages are fetched as a result of a visit (or dynamically after load). Pages can embed media and other resources.

	Pages, being HTML, have titles.

	Pages, titles, and visits are all observations, and as such cannot conflict.

	The last observed title to show for a URL is an aggregation of those events.

The entire notion of a history table — a concept centered on the URL — having a title is a subtly incorrect choice that causes problems with more modern browser features.

Modeled in Mentat:

[{:db/ident :visit/visitedOnDevice
 :db/valueType :db.type/ref
 :db/cardinality :db.cardinality/one}
 {:db/ident :visit/visitAt
 :db/valueType :db.type/instant
 :db/cardinality :db.cardinality/one}
 {:db/ident :site/visit
 :db/valueType :db.type/ref
 :db/isComponent true
 :db/cardinality :db.cardinality/many}
 {:db/ident :site/url
 :db/valueType :db.type/string
 :db/unique :db.unique/identity
 :db/cardinality :db.cardinality/one
 :db/index true}
 {:db/ident :visit/page
 :db/valueType :db.type/ref
 :db/isComponent true ; Debatable.
 :db/cardinality :db.cardinality/one}
 {:db/ident :page/title
 :db/valueType :db.type/string
 :db/fulltext true
 :db/index true
 :db/cardinality :db.cardinality/one}
 {:db/ident :visit/container
 :db/valueType :db.type/ref
 :db/cardinality :db.cardinality/one}]

Create some containers:

[{:db/ident :container/facebook}
 {:db/ident :container/personal}]

Add a device:

[{:db/ident :device/my-desktop}]

Visit Facebook in each container:

[{:visit/visitedOnDevice :device/my-desktop
 :visit/visitAt #inst "2018-04-06T18:46:00Z"
 :visit/container :container/facebook
 :db/id "fbvisit"
 :visit/page "fbpage"}
 {:db/id "fbpage"
 :page/title "(2) Facebook"}
 {:site/url "https://www.facebook.com"
 :site/visit "fbvisit"}]

[{:visit/visitedOnDevice :device/my-desktop
 :visit/visitAt #inst "2018-04-06T18:46:02Z"
 :visit/container :container/personal
 :db/id "personalvisit"
 :visit/page "personalpage"}
 {:db/id "personalpage"
 :page/title "Facebook - Log In or Sign Up"}
 {:site/url "https://www.facebook.com"
 :site/visit "personalvisit"}]

Now we can show the title from the latest visit in a given container:

.q [:find (max ?visitDate) (the ?title)
 :where [?site :site/url "https://www.facebook.com"]
 [?site :site/visit ?visit]
 [?visit :visit/container :container/facebook]
 [?visit :visit/visitAt ?visitDate]
 [?visit :visit/page ?page]
 [?page :page/title ?title]]
=>
| (the ?title) | (max ?visitDate) |
--- ---
| "(2) Facebook" | 2018-04-06 18:46:00 UTC |
--- ---

.q [:find (the ?title) (max ?visitDate)
 :where [?site :site/url "https://www.facebook.com"]
 [?site :site/visit ?visit]
 [?visit :visit/container :container/personal]
 [?visit :visit/visitAt ?visitDate]
 [?visit :visit/page ?page]
 [?page :page/title ?title]]
=>
| (the ?title) | (max ?visitDate) |
--- ---
| "Facebook - Log In or Sign Up" | 2018-04-06 18:46:02 UTC |
--- ---

Normalize; you can always denormalize for use.

To come.

Use unique identities and cardinality-one attributes to make merging happen during a sync.

To come.

Reify to handle conflict and atomicity.

To come.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

